Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512951

RESUMO

The Male Annihilation Technique (also termed the Male Attraction Technique; "MAT") is often used to eradicate pestiferous tephritid fruit flies, such as Bactrocera dorsalis (Hendel). MAT involves the application of male-specific attractants combined with an insecticide in spots or stations across an area to reduce the male population to such a low level that suppression or eradication is achieved. Currently, implementations of MAT in California and Florida targeting B. dorsalis utilize the male attractant methyl eugenol (ME) accompanied with a toxicant, such as spinosad, mixed into a waxy, inert emulsion STATIC ME (termed here "SPLAT-MAT-ME"). While highly effective against ME-responding species, such applications are expensive owing largely to the high cost of the carrier matrix and labor for application. Until recently the accepted protocol called for the application of approximately 230 SPLAT-MAT-ME spots per km2; however, findings from Hawaii suggest a lower density may be more effective. The present study adopted the methods of that earlier work and estimated kill rates of released B. dorsalis under varying spot densities in areas of California and Florida that have had recent incursions of this invasive species. Specifically, we directly compared trap captures of sterilized marked B. dorsalis males released in different plots under three experimental SPLAT-MAT-ME densities (50, 110, and 230 per km2) in Huntington Beach, CA; Anaheim, CA; and Sarasota-Bradenton, FL. The plots with a density of 110 sites per km2 had a significantly higher recapture proportion than plots with 50 or 230 sites per km2. This result suggests that large amounts of male attractant may reduce the ability of males to locate the source of the odor, thus lowering kill rates and the effectiveness of eradication efforts. Eradication programs would directly benefit from reduced costs and improved eradication effectiveness by reducing the application density of SPLAT-MAT-ME.


Assuntos
Eugenol/análogos & derivados , Inseticidas , Tephritidae , Animais , Masculino , Controle de Insetos/métodos , Inseticidas/farmacologia , Drosophila
2.
J Vis Exp ; (197)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37578242

RESUMO

Fruit flies of the Tephritidae family are among the most destructive and invasive agricultural pests in the world. Many countries undertake expensive eradication programs to eliminate incipient populations. During eradication programs, a concerted effort is made to detect larvae, as this strongly indicates a breeding population and helps establish the spatial extent of the infestation. The detection of immature life stages triggers additional control and regulatory actions to contain and prevent any further spread of the pest. Traditionally, larval detection is accomplished by cutting individual host fruits and examining them visually. This method is labor intensive, as only a limited number of fruit can be processed, and the probability of missing a larva is high. An extraction technique that combines i) mushing host fruit in a plastic bag, ii) straining pulp through a series of sieves, iii) placing retained pulp in a brown sugar water solution, and iv) collecting larvae that float to the surface was tested. The method was evaluated in Florida with field-collected guava naturally infested by Anastrepha suspensa. To mimic low populations more representative of a fruit fly eradication program, mangos and papaya in Hawaii were infested with a known, low number of Bactrocera dorsalis larvae. The applicability of the method was tested in the field on guava naturally infested by B. dorsalis to evaluate the method under conditions experienced by workers during an emergency fruit fly program. In both field and laboratory trials, mushing and sieving the pulp was more efficient (required less time) and more sensitive (more larvae found) than cutting fruit. Floating the pulp in brown sugar water solution helped detect earlier instar larvae. Mushing and sieving fruit pulp of important tephritid hosts may increase the probability of detecting larvae during emergency programs.

3.
Environ Entomol ; 52(3): 408-415, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37095060

RESUMO

Food-based baits are an important component of trapping networks designed to detect invasive tephritid fruit flies (Diptera: Tephritidae). An aqueous solution of torula yeast plus borax (TYB) is widely used, but synthetic food lures have been developed to facilitate field procedures, ensure standard composition, and lengthen the interval of bait attractiveness. Cone-shaped dispensers, containing ammonium acetate, putrescine, and trimethylamine (so-called 3C food cones), are currently being used in some large-scale trapping systems (e.g., Florida). Prior work in Hawaii showed that traps baited with 3C food cones capture similar numbers of Mediterranean fruit flies (medflies), Ceratitis capitata (Wiedemann), as TYB-baited traps after 1-2 wk of weathering but capture fewer medflies thereafter. In addition, 3C food cones attract fewer oriental fruit flies, Bactrocera dorsalis (Hendel), and melon flies, Zeugodacuscucurbitae (Coquillett) than TYB even when the food cones are freshly deployed. The current study describes an additional trapping experiment that expands upon earlier work by (i) presenting 3C food cones either unbagged (as done previously) or in nonporous or breathable bags to possibly reduce volatilization and lengthen bait effectiveness and (ii) measuring the content of the 3 components over time to potentially associate fruit fly captures with the loss of these food cone constituents. Implications of these findings for fruit fly surveillance programs are discussed.


Assuntos
Ceratitis capitata , Tephritidae , Animais , Controle de Insetos/métodos , Feromônios/farmacologia , Alimentos , Drosophila , Saccharomyces cerevisiae
4.
Sci Rep ; 12(1): 4865, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318342

RESUMO

Interspecies hybrids can express phenotypic traits far outside the range of parental species. The atypical traits of hybrids provide insight into differences in the factors that regulate the expression of these traits in the parental species. In some cases, the unusual phenotypic traits of hybrids can lead to phenotypic dysfunction with hybrids experiencing reduced survival or reproduction. Cuticular hydrocarbons (CHCs) in insects are important phenotypic traits that serve several functions, including desiccation resistance and pheromones for mating. We used gas chromatography mass spectrometry to investigate the differences in CHC production between two closely related sympatric Hawaiian picture-wing Drosophila species, Drosophila heteroneura and D. silvestris, and their F1 and backcross hybrid offspring. CHC profiles differed between males of the two species, with substantial sexual dimorphism in D. silvestris but limited sexual dimorphism in D. heteroneura. Surprisingly, F1 hybrids did not produce three CHCs, and the abundances of several other CHCs occurred outside the ranges present in the two parental species. Backcross hybrids produced all CHCs with greater variation than observed in F1 or parental species. Overall, these results suggest that the production of CHCs was disrupted in F1 and backcross hybrids, which may have important consequences for their survival or reproduction.


Assuntos
Drosophila , Simpatria , Animais , Drosophila/metabolismo , Havaí , Hidrocarbonetos/metabolismo , Masculino , Feromônios
5.
PLoS One ; 14(3): e0213337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30849115

RESUMO

Male Annihilation Technique (MAT) is a key tool to suppress or eradicate pestiferous tephritid fruit flies for which there exist powerful male lures. In the case of Bactrocera dorsalis (Hendel), a highly invasive and destructive species, current implementations of MAT utilize a combination of the male attractant methyl eugenol (ME) and a toxicant such as spinosad ("SPLAT-MAT-ME") applied at a high density with the goal of attracting and killing an extremely high proportion of males. We conducted direct comparisons of trap captures of marked B. dorsalis males released under three experimental SPLAT-MAT-ME site densities (110, 220, and 440 per km2) near Hilo, Hawaii using both fresh and aged traps to evaluate the effectiveness of varying densities and how weathering of the SPLAT-MAT-ME formulation influenced any density effects observed. Counterintuitively, we observed decreasing effectiveness (percent kill) with increasing application density. We also estimated slightly higher average kill for any given density for weathered grids compared with fresh. Spatial analysis of the recapture patterns of the first trap service per replicate x treatment reveals similar positional effects for all grid densities despite differences in overall percent kill. This study suggests that benefits for control and eradication programs would result from reducing the application density of MAT against B. dorsalis through reduced material use, labor costs, and higher effectiveness. Additional research in areas where MAT programs are currently undertaken would be helpful to corroborate this study's findings.


Assuntos
Eugenol/farmacologia , Frutas/parasitologia , Controle de Insetos , Feromônios/farmacologia , Tephritidae/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA